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A rev iew of the dependences of the d i rec t ,  geminal ,  vicinal ,  and long- range  s p i n - s p i n  coupling 
constants  on the valence ,  dihedral ,  and to r s ion  angles ,  and on the e lec t ronega t iv i t i es  and o r i en -  
tations of the he t e roa toms  is given. The e m p i r i c a l  and nonempi r ica l  dependences for the con-  
s tants  with par t ic ipat ion of the nuclei of the 1H, 13C, 14N, t~N, I~F, Sip, 2~Si ' tl~Sn ' and 199Hg i s o -  
topes  a r e  p resen ted .  

High-reso lu t ion  NMR spec t roscopy  has c u r r e n t l y  become  one of the widely used physical  methods for the 
invest igat ion of the chemica l  and th ree -d imens iona l  s t r uc tu r e s  of molecules  of organic  compounds in liquids 
and solutions.  The applicat ion of the N1V~ method to the study of the s t r u c t u r e s  of he te rocyc l ic  compounds is 
pa r t i cu l a r ly  effect ive.  The p re sence  of an endocyclic h e t e r o a t o m  leads to an inc rease  in the internal  chemica l  
shift  between the methylene  and methyl idyne protons and also between the nuclei  of ca rbon-13 ,  and this fac i l i -  
ta tes  the quali tat ive in te rpre ta t ion  and quanti tat ive analys is  of the NIVIR spec t ra .  

This r ev i ew is devoted to genera l  p rob lems  in the applicat ion of NMR spec t roscopy  to the study of con-  
fo rma t ions ,  p r i m a r i l y  those of sa tu ra ted  he te rocyc les .  In this paper  we will not se t  out to give a r ev iew of all 
of the extensive informat ion devoted to the de te rmina t ion  of the t h r ee -d imens iona l  s t r u c t u r e s  of he te rocye les  
by the NMR method; only those publications that mos t  c l ea r ly  i l lus t ra te  the genera l  approach in a methodical  
r e s p e c t  will be d i scussed ,  although the scient i f ic  and p rac t i ca l  value of other  s tudies not mentioned he re  may  
undoubtedly be v e r y  great .  

The cu r r en t ly  accepted  c lass i f ica t ion  of nuclear  spin s y s t e m s  and the methods for  extract ion of the p r in -  
cipal  spec t r a l  p a r a m e t e r s  - the chemica l  shifts  (5i) and s p i n - s p i n  coupling constants  (SSCC) - f rom the NM:R 
spec t r a  have been desc r ibed  in monographs  [1-6], r ev iews  [7, 8], and spec ia l  manuals  [9]; ca ta logs  and a t lases  
of NM:R s p e c t r a  [10] a re  of g rea t  a s s i s t ance  ha studies of this kind. After  de terminat ion of the 6 i shif ts  and 
SSCC, one faces  the p rob lem of thei r  use  for the es tab l i shment  of the t h r ee -d imens iona l  s t ruc tu re  of the mo le -  
cules  of the invest igated compound. 

A f r a g m e n t a r y  s u m m a r y  of the mos t  impor tan t  s t e r eoehemica l  NMR dependences of the nJNN, and 5 i 
p a r a m e t e r s  in a f o r m  sui table  for p rac t i ca l  use is p resen ted  below. The p r o b l e m  of the p r o t o n - p r o t o n  geminal  
and vicinal  SSCC is desc r ibed  within a m o r e  genera l  f r a m e w o r k  in a r ev iew by  V. F. Bys t rov  [11]. 

1. D e p e n d e n c e  o f  

PART I. SPIN- SPIN COUPLING CONSTANTS 

AND CONFORMATIONS OF HETEROCYCLES 

t h e  V i c i n a l  3 J H H ,  C o n s t a n t  on  t h e  D i h e d r a l  

A n g l e .  E f f e c t  o f  t h e  E l e c t r o n e g a t i v i t i e s  o f  t h e  H e t e r o a t o m s  

The vicinal  3JHH, p r o t o n - p r o t o n  SSCC has the mos t  extensive applicat ion in the conformat ional  analysis  
of hydrogenated he t e rocyc le s  by the 1H NMR method. The dependence of this constant  on the dihedral  angle (0) 
in ethane has been examined r epea ted ly  theore t i ca l ly  by the va lence  bond (VB) [12] and MO [13, 14] methods 
and is s a t i s f ac to r i l y  desc r ibed  by the Karplus  equation [12] 

3jo Hw = A + B. cos 0 + C. cos 20, (1) 

where  the values  A = 7 Hz, B = -  1 Hz, and-C = 5 Hz a re  a s sumed  on the bas i s  of expe r imen ta l  data [15]. I twas  l a t e r  
[16] p roposed  that  the angular  dependence be r e p r e s e n t e d  in the f o r m  
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[ 8 5cos 2 0 - 0  28, 0~176  3]HH" = ~  ~' 2 " 
( 9.5cos 0-0.28, 90~ 180 ~ 

(2) 

Dependences (1) and (2) and dependences s im i l a r  to them [17, 18] fit into the sufficiently b road  c r o s s -  
hatched region of 3JHH, v a l u e s  shown in Fig. 1. ]~ is apparent  f r o m  Fig. 1 that the 3JHH, constant  r e a c h e s  its 
m a x i m u m  value of 9.5-16 Hz when 0 =180 ~ is 6.0-10 Hz when 0 =0 ~ and b e c o m e s  smal l  or  equal to ze ro  in the 
vic ini ty  of a r ight  angle. The sca t t e r  in the 3JHH, values for  a given 0 is due to the effect  on the coupling 
nuclei of a number  of e lec t ronic  and geomet r i ca l  f ac to rs ,  The mos t  important  f ac to r s  a r e  l i s ted  below. 

1) A change in the e lec t ronegat iv i t ies  (EN) of subst i tuents  X at tached to the f ragment  under considerat ion;  
the ave r age  vicinal  constant  d e c r e a s e s  l inear ly  as the sum of the EN of the subst i tuents  i nc reases  in a c c o r -  
dance with the addit ive equation [15, 19-22] 

aro exp_ 3,~ ( 1 - ~,.ZAEi) (3) 
J H H ' - -  , r  H I t '  . 

where  "~J~ is the coupling constant  for the ansubst i tuted ethane f ragment ,  AE is the difference in the EN of 
the substi tuent  and the hydrogen a tom,*  and constant 3. =0.07 sa t i s f ac to r i ly  desc r ibes  the phenomenon in c o m -  
pounds with f r ee  ro ta t ion  or pseudorota t ion (in the r ings)  about the C - C  bond in the ethanelike f ragment .  
Here  the changes in 3JHH, c o r r e s p o n d  physica l ly  to e lec t ron  t r a n s f e r  f r o m  the C - H  bonding to the C - X - a n t i -  
bonding Me. 

2) A change in the H - C - C  va lence  angles;  an inc rease  in these  angles usual ly  leads to a dec r ea se  in the 
coupling constant.  

3) A change in the C - C  bond length; an inc rease  in RC_ C leads to a dec rea se  in the coupling constant.  

4) A change in the hybridizat ion of one of the carbon a toms;  the 3JHH, constant  is usual ly  s m a l l e r  for 
H - C s p S - C s p 2 - H  than for  H - C s p 3 - C s p $ - H ;  this  d e c r e a s e  is mani fes ted  m o r e  marked ly  in the in terval  0~ 
0 _ 50 ~ than-in the in terval  50~ 0 _< 130 ~ whereas ,  on the other  hand, the constants  i nc rea se  and a r e  not equal 
to ze ro  when 0 ,~ 90 ~ [11]. 

If  one of the carbon a toms  is included in the composi t ion of t h r e e - m e m b e r e d  he te rocyc les  containing O 
and S a toms ,  the vicinal  constant is descr ibed  by the equation [23] 

3/mr = 5.1 cos 20, 0~  0 ~ 9 0  ~ (4) 

It would s e e m  that the r e l a t i ve ly  broad r ange  of 3JHH, values  p resen ted  in Fig. I lowers  the potential  
value of the dependence of 3JHH, for  purposes  of conformat ional  ana lys is .  However ,  exper ience  has shown that 
this is not so. This  can be i l lus t ra ted  in the case  of the analys is  of the PMR s p e c t r u m  of 3 ,4 -d ime thy l -6 -  
phenyl te t rahydr0-1 ,3 -oxaz ine  (1) (Fig. 2). In this case  one can, in pr inciple ,  a s s u m e  chai r  and twist  c o n f o r m a -  
tions and s e v e r a l  boat  f o r m s  for the he t e ro r ing  or the exis tence of r i ng  in te rconvers ion .  F r o m  the ass ignment  
of  the l ines  and the s chem e  of the s p i n - s p i n  spli t t ings p resen ted  in Fig. 2 it m a y  be seen that the s p e c t r u m  
co r r e sponds  p r i m a r i l y  to a chai r  conformat ion for  the r ing  and e i s - 4 - m e t h y l - 6 - p h e n y l  configurat ion for I. The 
cha i r  conformat ion  can be judged f r o m  the fact of r e v e r s a l  of the chemica l  shif ts  of the methylene protons a t -  
tached to the C(~) a tom (the equator ia l  proton r e sona t e s  at higher field than the axial  proton). This phenomenon 
is typical  for 1 ,3 -he te rocyc les  (O and N) in the chair  conformat ion  [24, 25]; the 3J4asa = 11.0 and 3J6asa = 10.7 
Hz values  for  the vicinal  cons tants ,  in conformi ty  with the graphs  in Fig. 1, indicate an a x i a l - a x i a l  (0 = 180 ~ 
or ien ta t ion  of the C - H  bonds at the C(4 } and C(6 } a toms and the C - H a  bond at C(5), whe reas  the 3J~a5e = 
3.3 and 3J4ase=3.5 Hz values ,  which co r respond  to a dihedral  angle 0 of ~ 60 ~ conf i rm the c o r r e c t n e s s  
of  the se lec ted  orientat ion of the subst i tuents  and the f o r m  of the carbon port ion of the he teror ing .  The  absence  
of r e v e r s a l  of the chemica l  shifts  of  the 2-He and 2-H a protons repudia tes  any u n s y m m e t r i c a l  boat con fo rma-  
tion [25], and the geminal  2J~a 2e value of -10 .7  Hz const i tutes  evidence for  an axial  or ienta t ion of the N - C H  3 
bond (see point 5c below) and co r r e sponds  to the chai r  form.  If the p r i m a r y  conformat ion were  the 2,5-  or  1,4- 
twist  f o r m ,  the f o r m  of the s p e c t r u m  and the 3JHH, values  would have been comple te ly  d i f ferent , r  just  as  in the 
ca se  of f a s t  (on the NMR t ime  scale)  conformat iona l  t r ans i t ions .  

*The  introduction into our examination of d i f ferences  AEi in place of the E i va lues  t hemse lves  is convenient  in 
that the 3J~ coeff icient  in f ront  of the pa ren thes i s  in Eq. (3) is a constant  for ethane for  the 0 value under 
considera t ion.  

Cases  of this type will be d iscussed  in the second pa r t  of the rev iew,  which is devoted to the s t e r eochemiea l  
fac tors  that affect  the chemica l  shif ts  and to the appl icat ion of the SSCC and 5 i va lues  to the study of the t h r e e -  
d imensional  s t r u c t u r e s  of the molecules  of specif ic  he te rocyc l i c  compounds.  
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Fig. 1. Dependence of the vicinal p r o t o n - p r o t o n  
constant on dihedral  angle O. The continuous 
heavy line cor responds  to the data in [17], while 
the broken line cor responds  to the data in [14]. 
The upper and lower boundaries  of the c r o s s -  
hatched region include cases  in which one of the 
in termedia te  carbon atoms is in the spLhybr id -  
ized state.  

H a H a 

-rdH2?~ 4-H~ 
Ho 3 CH 3 J L  

334=5a =11,0 HZ 
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"~3.THCH3 = 6,3 HZ 

5 %  5-H, 
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Fig. 2. 

i 

0 s ppm 

PIVIR spec t rum of 3 ,4-dimethyl-  6-phenyl te t rahydro-  1,3-oxazine (1) 
(10% by volume solution in CC1 at 28~ and 100 MItz). 

1 0  

~ l 2 Z~3 

- 30~ 0 ~ O~ § 30 ~ 

FiK. 3. Charac te r  of the change in the vicinal  
3~Ht~' =33ae and 3J~I~vlls =3Jaa constants in four -  
membered  r ings  as a function of a .  

The example examined above shows the f rui t fulness  of the use of the Karplus dependence 3JHH, =f(0) in 
the analysis  of s i x - m e m b e r e d  he te rocyc les .  The application of this dependence to s t e reochemiea l  problems of 
f i v e - m e m b e r e d  he te rocyc les  leads to ex t r eme ly  approximate  data on the geomet ry  of ~he molecule.  A more  
accura te  approach r e q u i r e s  al lowance for  the effect  of the e lect ronegut ivi ty  and the or ientat ion of the he re to -  
atoms on SJHH,; this will be examined in detail  below, while the conformat ional  analysis  of f i ve -membered  
he te rocyc les  on the bas is  of P1VIR data will be d iscussed  in par t  II of this review.  
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TABLE 1. Comparison of Torsion Angles r and One Found by the 
R-Factor Method and Calculated with Allowance for the Electro- 
negativites and Orientations of the Substituents in Conformationally 
Labile Six-Membered Heteroeycles 

Torsion angles, 
~lae , Hz deg. 

Compound 
calc. 

Piperazine [33] 
1.3-Dioxane [36] 
1,4-Dioxane [33] 
Morpholine [37] 
1,3 -Dithiane [38] 
1,4-Dithiane [33] _ 
1.4-Oxathiane [37J 
1,4-Diselenane [33] 
d z-4,4- FetrahyOropyran [39] 
dz-4,4- Piperiaine[39] 
d z-4,4- Thiane [39] 
d 2-4,4- Selenane [39] 
d~-4,4- rellurane[39] 
ds _3,3,4,4,5,5,6, 6 _CyclohexaneE 0] 

* The s jc i s  value presented is the 
and SJae ,nnconstants. 

3,14 
2,29 
2,29 
2,75 
2,75 
3,75 
334* 
3,81 
3,14" 
3,48* 
3,75* 
3,78* 
3,91" 
3,75 

exptl. r 

3,04 58 
2,78 58 
2,78 58 
3,04" 58 
3,5 59 
2,40 65 
2,65* 62 
2,43 64 
3,87* 56 
3,77* 57 
3,26* 61 
3,09" 61 
3,12" 61 
3,73 58 

One 

60 
57 
57 
58 
61 
66 
62 
66 
57 
59 
62 
63 
63 
60 

average of two different 3Ja, e 

TABLE 2. Calculated Torsion Angles r and 0 in Conformationally 
,Rigid" (primary chair conformations) Six-Membered Heterocycles 

Compound 

cis -2 -(5 -Bromo -2 -furyl)-4 -methyl - 
1,3-dioxane (VII)r 

2-tert-Butyl-l,3 -dioxane (XII) [41] 

cis - 2 ~ Phenv 1 -,% 4 -d im ethylm orpho - 
line (XIII'[42] 

1,3-Propanediol sulfite (XIV)[24] 

1,3-Propanediol selenite (XV)[24] 

trans-2 -iviethoxy-4-methyl-l,3,2- 
dioxaphosphorinane (XVI)r 

Coupling ~calc* 
)rotons VIzHH' ' 

6e5e 
6e5a 
6a5e 
6a5a 

4e5e 
4e5a 

4a5e  
4a5a 

2a3e 

4e5e 
4e5a 
4a5e 
4a5a 

4e5e 
4eSa 
4a5e 
4uSa 

�9 6e5e 
6e5a 
6a5e 
6a5a 

m 

3robs  

H~ 

angles, deg 

r 0 

58 
54 58 

56 

63 
57 

53 56 

- 55 

50 
59 

57 53 

50 
59 

57 53 

58 
59 

57 56 

* Calcu la ted  unde r  the  a s s u m p t i o n  that  r = 60 ~ 
c A c c o r d i n g  to the  data  of the  p r e s e n t  r e s e a r c h .  

The j u s t i f i c a t i on  for  the  d i r e c t  app l i ca t ion  of dependences  (1)-(3) to f ou r -  and t h r e e - m e m b e r e d  h e t e r o -  
cyc les  is not obvious .  E x p e r i e n c e  shows that  in f o u r - m e m b e r e d  r i n g s  the  v i e i n a l  c o n s t a n t s  be tween  the c i s  
p ro tons  u s u a l l y  have  h igher  v a l u e s  than those  be tween  the  t r a n s  p ro tons  [26]. Th i s  o b s e r v a t i o n  does not con -  
t r a d i c t  the  K a r p l u s  dependence  of the  f o r m  8j =fro. cos20.  It m a y  be u n d e r s t o o d  that  sadd le  angle  fl = 180 ~ - cx 
d e t e r m i n e d  d ihed ra l  ang le  0 be tween  the  C - H  bonds .  Th i s  dependence  for  v a l e n c e  ang le  y=109~  ' is depic ted  
in Fig.  3 in t e r m s  of the r a t i o  3 J / J ~  0 for  the c o n s t a n t s  3Teis _T and  3.Ttrans -.T ~HII '  - ~  ~  - ~ a a  (or flee). The r e a l i z a -  

o 

G 

yx e 
1290 



TABLE 3. Vicinal SJHH, SSCC, R Factors Calculated from Them, 
and Torsion Angles ~ and Oae in 2,5-Disubstituted 1,3-Dioxanes 
and 1,3-Dithianes 

H o H 
He 

I 

O 

O 

S 

S 

S 

S 

CHa 

i-CaH7 

CHa 

CHa 

i-CaH? 

i-CsHr 

R '  
bp, *C 

Isomer [(mm) 

I 
SSCC, Hz IR fac- 

i 

oo I  ,oo, i  ,ooq 

I trans 
i-CaH7 [ cis 

]trans 
i-Call7 I cis 

] trans 
CH3 I cis 

Itrans 
i-C3H7 [cis 

[ t r a . n $  

CHa [cis " 
trans 

i-CzHr ]cis 

'58,6 (12) 110,5 
50 (12) 112 * 

80,5 (11) 110.3 
74,5 (11} 112 * 
mp 54,5ol 9,0 

58 (2) 112,4 
72 (1) I 9,0 
69 (1) 112,4 
73 (1) I 9,0 
71 (2) 112,4 

nap 41" I 9,0 
98 (2) 112,4 

3,0* 
2,5 ~-,1 
3,0" 
1,9 ~-,C 
4,4? 
3,1 7E 
4,4T 
4,0 
4,4? 
3,0 ~-,5 
4,4? 
4.2 ~',~ 

4,5 1,78 
1,91 

~-,7 1,72 
1,81 

75 1,49 
1,72 

5,,0 1,34 
2,05 

~,0 1,67 
- -  1,71 
4,5 1,49 

1,97 

angle, deg 

~p Oaa 

55 56 
56 52 
54 55 
55 53 
52 56 
54 56 
50 54 
57 58 
54 58 
54 56 
52 56 
57 57 

* Taken from [24]. 
~fTaken from [46] 

t ion  of  the re la t ionsh ip  j c i s  > 3 j t r ans  o r  s j t r a n s  > Sjcis  depends  not  only  on de fo rma t ion  angle ~ but a l so  on the f o r m  of 
h e t e r o a t o m  X in the  r i ng .  If  one  d i s r e g a r d s  the e l e c t r o n e g a t i v i t y  and the  o r i en ta t ion  of  X, fo r  the  t r a n s  c o n -  
s t an t s  one can  w r i t e  the  e x p r e s s i o n s  

Jan =1~ 180 ~ �9 cos ~ (V'+~) ; (5) 
] ]o o ee= (180).COS2(y'--~), 

where r is the angle of rotation about the C - C  bond (see formula II), and Y' is the projection of valence angle 
y on the plane of the Newman projection. One can then determine ~0 from the Jaa/Jee  ratio [27]: 

b - I  tan~= ~ tan (y ' -90~  (6) 

where b = 4Jaa/Jee. Angles r and a are related by the expression ]/2-tan 2 = tan(p; consequently, taking expres- 
sion (6) into account, we have 

a 1 b - 1  tan . . . .  tan (y ' -90~  .(7} 
2 

An ana lys i s  o f  the :PMR s p e c t r a  of  2 - s u b s t i t u t e d  oxe tanes  i x = o n  shows that  j e i s  > ~ r a n s  and that ,  a c c o r d -  
ing to  e x p r e s s i o n  (7), de fo rm a t i on  angle  c~ ~ 5 ~ w h e r e a s  in 2 ,3 -d i subs t i tu t ed  oxe tanes  [28], j t r a n s  > j e i s ,  and the 
de fo rma t ion  angle  should  then i n c r e a s e .  In 2 - subs t i t u t ed  (CH s and l~n} aze t td ines  (X=NR} j t r a n s  > j c i s ,  and the  
de fo rma t ion  angle  l ies  in the  15-20 ~ r a n g e  [27]. 

Confo rma t iona l  p r o b l e m s  a r e  absent  in t h r e e - m e m b e r e d  h e t e r o c y e l e s .  He re ,  a c c o r d i n g  to Eq. (4}, the 
v ic ina l  SJH H, cons tan t s  should  be s m a l l e r  than t hose  expec ted  f r o m  e x p r e s s i o n s  (2). In fac t ,  in monosubs t i t u t ed  
o x i r a n e s  Sxcis - , ,3 .6-5.5 and S Tt rans~  1 .5-2 .8  Hz [29, 30], a s  in the c a s e  of  e thylene  sulf ide  tsTcis 

~HH' ~HH' OHH, = 7.1 and 

s j t r a n s  =5 .6  Hz [31]). 
V H H ,  

2 .  V i c i r t a l  S J H H ,  C o n s t a n t s ,  " R  F a c t o r s , "  a n d  R i n g  

T o r s i o n  A n g l e s  r Ln S i x - M e m b e r e d  H e t e r o c y c l e s  

Above  in the c a s e  of the 1 , 3 - o x a z i n e  r i n g  we d e m o n s t r a t e d  tha t  in the  c a s e  of  s i x - m e m b e r e d  h e t e r 0 c y c l e s  
one can  s e l ec t  f r o m  the v ic tua l  SJHH, cons tan t s  one of  the poss ib l e  canon ica l  f o r m s  (chair ,  h a l f - c h a i r ,  twist ,  
boa t ,  and o thers )  as  the p r i m a r y  f o r m  o r  e s t ab l i sh  within which se t  of c o n f o r m a t i o n s  the c o n f o r m a t i o n a l  t r a n s i -  
t ions  occu r .  One can  f u r t h e r  se t  up for  onese l f  the  fol lowing p r o b l e m  with r e s p e c t  to the e s t ima t ion  of  the 
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Fig. 4. Dependence of the ca lcula ted  vic inal  cons tan ts  for  ethane and f luoroethane on di-  
Tethane xf luoroethane as  a f tmc- hedra l  angle 0 (upper graphs) and the d i f ference  AJ =OHH, - "HH'  

tion of  phase  angle q~= 6 - 120 ~ (lower graph). 

Fig. 5. Dependence of the "ethanel ike" exper imen ta l  vicinal  SJHH, constant  on dihedral  
angle 0 (shown by the continuous a r c  on the Newman projec t ions  and of coefficient  h on 
phase  angle ~ = ~ - 120 ~ (shown by the b roken  arc) .  The points c o r r e s p o n d  to the expe r i -  
m e n t a l  SJHtt, constants  in the , r ig id"  1,3-dioxane r ing.  

degree  of dis tor t ion of the "Meal. (canonical) conformat ion  as a function of the  configurat ion of the s t e r e o i s o -  
m e r s  and the cha rac t e r  and posi t ion of the subst t tuents .  One of the methods for  the e s t ima t ion  of the d i s to r -  
t ion of a conformat ion  is the R- f ac to r  method. This  method was proposed  by Buys [32] and does not r e q u i r e  
one to take  into account the var ious  effects  that  influence the 8JHH, constant .  The  R fac tor  [33]is equa l t o the  

H 

/ C " - . ~  N e' 

H~ ] X . i  " - . .~L / ' - .  HO 

H o. Ho,O~ 

I I I  f V  

ra t io  of the ave r age  values  (3j trans~ and /3.lets ~ (the angular  b r acke t s  designate  averaging):  
" HI]' " " ~ H H "  

1 3 _~.tra=_ T(I,~,,,  +31~,) ~"JHw t TM 

< ~H~'> = 1 (al~e. +s/~.e ) 
2 

Proceeding  f r o m  express ions  of the Karplus  fo rm,  one can link the R fac tor  with r ing  to rs ion  angle r (see 
s t ruc tu r a l  f o rmu la s  HI and IV) by  means  of the dependence 

(s) 

[841: 

[ 3 ]V~ 
. (9) 

The R value can be de te rmined  only for  compounds that have one of the s t ruc tu ra l  f r agmen t s  l i s ted  below 

a) an X -  CH~.CH 2-  Y or  X -  CH2CHR - Y group in molecu les  with two rap id ly  inver t ing equivalent confor -  

m e r  s; 

b) an X -  CH2CH2-Y group in an absolute ly  r ig id  molecule  (a canonical  or  p r i m a r y  conformation}; 

c) a CHRCH~CHR' group in a r ig id  molecule  with R and R '  t r a n s - o r i e n t e d  with r e s p e c t  to one another .  

Thus it is apparent  f r o m  fo rmula  (8) that  the R- f ac to r  method r e q u i r e s  a knowledge of e i ther  four 3JHH, 
SSCC between coupling protons  or  two ave raged  constants  between two exchanging p a i r s  of protons .  It was  
found that the R ra t io  does not depend on the e lec t ronega t iv i ty  of the X and Y a toms  [32, 34]. The m e a s u r e d  R 
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values range  f rom 1.1 to 3.9. In s i x - m e m b e r e d  r ings  without dis tor t ions the tors ion  angle l ies in the 55-58 ~ 
range ,  whereas  in the case  of compress ion  of the carbon portion of the r ing  r is lower than these  values,  and 
the r angles inc rease  in the case  of great  flexibility. In 1,3-dioxane tors ion  angle r is 54 ~ which is in excel -  
lent agreement  with the r e su l t s  of x - r a y  diffraction analysis  [32, 35]. The r values for  some other s i x - m e m -  
be red  he te rocyc les  a r e  p resen ted  in Tables 1 and 2. The R- fac tor  method can be r eg a rd ed  as a method for the 
approximate  quantitative cha rac te r i za t ion  of the conformat ions  for f i ve -membered  he te rocyc les  (see  Part  II) 
and as a be t te r  approximation for  s ix - ,  seven- ,  and e igh t -membered  he te roeyc les .  For example,  in the s t e r eo -  
i somer ic  2 ,5 -d ia lky l - l ,3 -d ioxanes  and 1,3-dithianes [38, 43-45], in which p r imar i l y  chair  conformations a re  
rea l i zed ,  the tors ion angles v a r y  f rom 52-57 ~ (Table 3). It is apparent  f rom Table  3 that r =52 =~ 2 ~ for the 
t rans  i somer  (V) and 56 �9 2 ~ for the cis i somer  (VI) of 1,3-dithiane. The cis i somers  consequently exper ience  
somewhat less dis tor t ion of the "ideal"  chair  conformation than the t rans  i somer .  This should be understood 
to be the r e su l t  of the more  favorable  or ienta t ion of substi tuent R in the C(s } axial position as compared  with 
the usual eyclohexane equatorial  position because  of weakening of the 1 ,3- interact ions  and the exis tence of 
"spat ial  f r e e d o m ,  in the region of the position of the r ing  sulfur atoms. This phenomenon is in opposition to 
the tendencies  of the changes in r in cyclohexane and 1,3-dioxane der ivat ives .  

,....,..~... . -~ , / ~ x  F"R/ 

v ~q Vt 

A method for es t imat ion of dihedral  angles 0 with re.spect to the vicinal 3JHH, constants  [dihedral angle 
es t imat ion by the ra t io  method (DAERIVl) [46]] has been proposed;  this method, like the R-fac tor  method, makes 
it possible to es tabl ish the conformations without p r io r  determinat ion of the J~ constants in the Karplus Eq. (2), 
but the applicabil i ty of the method is l imited to the e lec t ronegat iv i ty  of substituent R in the -CH RCH 2 - f r agmen t .  
The e r r o r  introduced is a maximum when substituent R is an t i -per ip lanar  with r e sp ec t  to one of the protons 
under considerat ion.  The method examined below does not have this disadvantage. 

3.  A l l o w a n c e  f o r  t h e  E f f e c t  o f  t h e  O r i e n t a t i o n  

o f  t h e  H e t e r o a t o m  on  t h e  V i e i n a l  3 J H H ,  C o n s t a n t  

The effect of the e lec t ronegat iv i ty  of the substi tuent depends on the re la t ive  spatial  or ientat ion of the sub- 
sti tuent r e l a t ive  to the coupling protons and has its maximum value when the i r  or ientat ion is t rans  coplanar  
[47]. This was initially observed  for the s taggered confo rmers  in such ~rigid ~ s t ruc tu res  as s teroids  [48], 
cyclohexane der iva t ives ,  and s i x - m e m b e r e d  he te rocyc l ic  compounds [49] and was la te r  observed  in noncyclic 
compounds during a study of 1,2-disubst i tuted ethanes [50]. A study of bicyel ic  sys tems  with ecl ipsed CH2CHX 
groups [51, 52] led to different  l inear  re la t ionships  between the 3JH H, (0 ~ and 3JHH, (120 ~ constants and the 
e lec t ronegat iv i t ies  of the substi tuents.  

The effect  of the or ientat ion of the C - H  bonds under considerat ion re la t ive  to the he te roa tom can be  
graphical ly  seen in the case  of 2- (5 -b romo-2 - fu ry l ) -4 -me thy l - l , 3 -d ioxane  (VII)* and two i somers  of alkoxy- 
cyclohexane (IX and X). 

H II H a , 

./:' ~ 7 ~'~ .... J\ ~  ~' "'"" 

~fo )(e ~ 2,9 H Z  
V f l  

VIII 

In 1,3-dioxane VII, r e g a r d l e s s  of the dis tor t ions of the r ing  conformation (angle r ), dihedral  angles 0 i and 
02 of the C(5 ) -C(6 ) f ragment  (VIII) should be identical and equal to angle r  In fact,  3J6a 5e (02) =2.9 Hz and 
3Jsa6e(01) =5.0 Hz differ  markedly.  Since the sum of the e lec t ronegat iv i t ies  (~AE[) with r e sp ec t  to the 3J6ase 

t 
constants  is identical,  it would seem that when Or= 02 these  constants  should be identical,  but this is not ac -  
tually observed.  This is evidently due to the fact that the oxygen atom has a t rans  or ientat ion (5-He) with r e -  
spect  to one of the coupling vicinal  pa r tne r s ,  whereas  it has a gauche or ientat ion (5-Ha} with r e spec t  to the 
other .  The C(4 ) a tom has a s imi la r  or ienta t ion with r e sp ec t  to the other  pa r tne r s  (6-Ha and 6-He). The AE i 

* In this compound both substi tuents act as conformat ion-f ix ing groups. 
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differences  a re  substant ial ly different  for  the O and C atoms (on the Huggins scale  [53] AEo= 1.3 and AE C = 
0.4). Both the O and C atoms have t rans  or ientat ions with r e spec t  to the 5-H e and 6-H e protons,  and the 
3jga uche 

5eee constant (2.0 Hz) is t he re fo re  smal le r  than the previous values.  

H 

H v 

RO 2 -3  NZ H ~5 .[-Iz )~a 

,x x XI 

3-gauche F o r r e s t  [54] has made a detailed analysis  of the aHH, constants in the ethane fragment  of d iverse  
compounds in o rde r  to asce r ta in  the re la t ionship  between the 3jgauche constants ,  the e lec t ronegat iv i t ies  of the 

HH ~ 
substi tuents,  and thei r  orientat ion with r e spec t  to the coupling protons.  He found that the expected 3~H~}C (60 ~ 
value for dihedral angle 0 =60 ~ can be es t imated [47] f rom express ion  (10): 

3 �9 calc J Hit' (60 ~ = (4.1 +0,63EAE~) (1-0.462AE1) (1-0.462AE2), (10) 
i 

where  AE 1 and AE 2 a re  the differences in the e lect ronegat iv i t ies  of the two substi tuents in an ant i -per ip lanar  
or ientat ion (trans orientation) r e l a t ive  to the coupling protons,  and the e lect ronegat ivi t ies  of both substi tuents,  
i r r e spec t ive  of their  orientat ion,  a re  included in r, AEi. 

It has been proposed that this approach be used for the quantitative descr ipt ion of the deviations of the di- 
hedral  angles f rom the "normal ,  values.  The jo constant in express ions  of the fo rm 3 j= jo .  cos 2 e - C [see Eq. 
(2)] var ies  f rom compound to compound in an indefinite manner ,  but it can be found for a given compound f rom 
Eq. {11): 

3r aalc - HH" =]~ COS 260 ~  0.3, (11) 

where  the 3TCalc OHH' value is calculated f rom formula  (10). By substitution of the jo value found into explicit  ex- 
press ion (12) one can es t imate  angle One: 

cos Oae = [ (311~'P+ 0 .3 ) / ]~  v'. (12) 

For example,  in 1,4-dioxane the expected 3J~i~}c value f rom Eq. (10) is 2.06 Hz, whereas  the exper imen-  
hal 3J~i~_}), value is 2.78 Hz [33]. Est imation f rom fSrmulas (11) and (12) leads to dihedral  angle 0ae=57 ~ The 
R-fac tor  method gives r =58 ~ for the same compound. Since angles r and One should v i r tual ly  coincide in s ix-  
membered  r ings ,  the observed  agreement  const i tutes evidence that the F o r r e s t  method, which can be r ega rded  
as a f i r s t  approximation,  and the R- fac to r  method lead to s imi la r  r e su l t s  in conformat ional  analysis .  

A list  of the One and r values in a number of conformat ional ly  labile he te rocyc les  is p resented  in Table 1; 
for  comparison,  cyclohexane,  which will be subsequently used for a more  detailed discussion of or ientat ion ef-  
fects ,  is included in Table 1. In those compounds in Table 1 in which X and Y differ (XCH2CH~Y} , the observed  
3jexp = j c i s  constant is the average  of two comple te ly  different  gauche constants 3J2a3e and 3J3a2e,1 (XI), and the 
avHHage constant f rom the two calculated 3J~a~ld and 3J~eC values is t he re fo re  used to find the value. Di- 
hedral  angles One and r in a number of s i x - m e m b e r e d  he te rocyc les ,  the molecules  of which under normal  con-  
ditions exist  p r imar i l y  in the chair  conformation,  a re  p resen ted  in Table 2. In the case  of 1 ,3-he te roeye les  
VII, XII, and XIII alkyl or  a ry l  substi tuents act  as  "conformation-f ixing" groups,  whereas  in the case  of sulfite 
XIV, seleni te  XV, and phosphorinane XVI the conformat ional  "r igidi ty"  of the r ing  is due to the high stabil i ty of 
the pyramid of bonds of sulfur,  selenium, and phosphorus (for example,  in the case  of XVI invers ion of the 
pyramid of bonds of phosphorus is cha rac t e r i zed  by  a potential  b a r r i e r  of-~30 kca l /mo le  [55]). 

R 

XIV XV XVI 
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4.  T h e o r e t i c a l  a n d  E m p i r i c a l  D e p e n d e n c e  3 J H H ,  = f ( 0 )  

w i t h  A l l o w a n c e  f o r  t h e  O r i e n t a t i o n  o f  t h e  E n d o -  

a n d  E x o c y c l i c  H e t e r o a t o m s  

The p r o b l e m  of the effect  of the or ienta t ion of the he t e roa toms  on the vicinal  3JHH, constant  has been 
examined theore t i ca l ly  [MO LCAO Extended Hiickel Method (EHM)] [56-59] within a m o r e  genera l  f r a m e w o r k  
than the F o r r e s t  approach.  The vicinal  constants  in mono-  and disubst i tuted ethanes XCH 2-  CH2Y , where  X 
and Y=H,  CH3, NI-I2, OH, and F, were  calculated in [59] on the bas i s  of the P o p l e -  Santry approximat ion  [61]. 
The 33HH, =f(0) dependences for  X= Y=H and X=H,  Y= F a r e  p resen ted  in Fig. 4, in which the lower graph il-  
l u s t r a t e s  the contr ibution of the or ienta t ion  of X by the di f ference in the SSCC for ethane and f luoroethane AJ = 

Je thane  - J f luoroethane.  

The 8JHH, =f(0) cu rve  for  ethyl de r iva t ives  is shif ted with r e s p e c t  to phase  r e l a t i ve  to ethane (Fig. 4). 
The a s y m m e t r y  of the cu rve s  for  the monosubst i tu ted ethanes is the r e su l t  of the contr ibution of two different  
constants (for identical  dihedral  angles 0), which depend on the co r respond ing  angle q~ between the  fl proton 
under considera t ion  and subst i tuent  X: 

r = 0 -- 120 ~ (13) 

The r e s u l t s  show that although the e lec t ronega t iv i ty  of the subst i tuent  d e c r e a s e s  the ave r age  vic inal  con-  
stant ,  for  ce r t a in  0 values  (30-90 ~ and 210-280 ~ subst i tuent  X leads to an i nc rea se  in 3JHH, as  the e l e c t ro -  
negat iv i ty  of the subst i tuent  i nc reases ;  this has been exper !men ta l ly  conf i rmed  [62, 63]. 

The continuous cu rve  3JHH, =f(0) (Fig. 4) can with high a c c u r a c y  be approx imated  by  the equation [57] 

3 ]~H" (0, Ex) = (Ao--)~a. Ex) + (Bo- ~.~Ex) cos 0+ (Co-)wEx)cos 20+ 
+ (D0- ~,DEx) sin 0 + (Eo-  ~,EEx) sin 20, (14) 

in which s inusoidal  t e r m s  a r e  added to the or ig ina l  equation (1) in o rde r  to take  into account the a s y m m e t r y  of 
the cu rves  r e l a t i ve  to 0 = 0 ~ 

In [64], Eq. (14) was used with A, B, C ( D = E = 0 ) ,  and Ai constants  found on an empi r i ca l  bas i s  r e ly ing  on 
3Jan = 13.12, 3Jae =3.73,  and 3Jee=2.96 Hz for  cyclohexane [40]; this equation was used in the conformat ional  
ana lys i s  of 2 -a lkoxy  der iva t ives  of 1,4-benzodioxane and 1,4-benzoxathiane [64]. 

Severa l  emp i r i ca l  approaches  [11, 66] with specif ic  A i = F(q~) g raphs*  have been proposed  to take into ac -  
count the or ienta t ion effect  of subst i tuents  on 3JHH, in t e r m s  of the Ai p a r a m e t e r  in Eq. (3). In [67] this  ap-  �9 
p roach  was examined in g r ea t e r  detai l ,  and modif ied express ions  for  the vic inal  constants  we re  obtained in the 
f o r m  

3] HH' = ( 10.6COS 20 + 1.5sin 220) ( 1 -- Z~.~AE~) ; 
i 

0~ ~ 270~176 

s] HH' = ( 14COS 20+2.66sin 220) ( 1 -- X~.~AEi) ; 

90~ ~ 

(15) 

(16) 

Here  the ~, i ~ p a r a m e t e r s  a r e  de te rmined  by  the lower ~, i~~ F(~0) graph p resen ted  in Fig. 5, in which 
phase  angle q~ is found f r o m  express ion  (13). The dependence 3firth ,0 =f(O) for  ethane (AE i = 0) c anbe  cons t ruc ted  
f r o m  Eqs. (15) and (16). This  dependence is p resen ted  in Fig. 5, in which th ree  values  of vicinal  constants  3Ja,e, 
3Jaa ,, and SJae' found f r o m  the expe r imen ta l  s p e c t r u m  of 2 - t e r t -bu ty I -1 ,3 -d ioxane ,  which exis ts  p r i m a r i l y  in 
the chai r  conformat ion ,  a r e  shown. With al lowance for  the lower cu rve  in Fig. 5, these  values  a r e  v e r y  s a t i s -  
f ac to r i ly  desc r ibed  by  Eqs. (15) and (16). 

Durir/g the  der ivat ion of expres s ions  (15) and (16) in implici t  f o r m  it was a s s u m e d  that the he t e roa toms  
in the a posit ion have cyl indr ica l  s y m m e t r y ,  i .e. ,  it was a s sumed  that the or ienta t ion of the orb i ta l s  of the un- 
sha r ed  e lec t ron  pa i r s  ( t IED of the subst i tuents  has  no effect ,  whereas  it is known that the or ienta t ion of the 

*A A i = F(~0) graph in which dihedral  angle r l ies  in the r ange  0 ~ _<q~ _< 180 ~ is p re sen ted  in a d i sse r ta t ion  [66] 
with a r e f e r e n c e  to the unpablished r e s e a r c h  of S. Vottero. It follows f r o m  this r ev i ew that such l imi t s  for  the 
change in angle q~ a r e  inadequate for  the comple te  descr ip t ion  of the or ienta t ion  effect of a subst i tuent  on 3JHH,. 
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TABLE 4. Estimated Values of the SJHH, Constants (Hz) in Six- 
Membered Heterocycles  for the Canonical Chair Conformation (r = 
60 ~ and Experimental  3 j ~ ,  Values 

H a ' 

H H o 

to Forrest I .~.. Modified .exp 
X V Z Constant Forrest[47 ~iktorovt: '*j method[67] ~J Htr 

0 C 0 
1,3 -Dioxane 

S C S 
1,3 -Di[hiane 

0 0 C 
1,a-Dioxane 

0 S C 
1,4- Oxathi- 

a n e  

0 N C 
Morpholine 

3] ate 
3] oe" 
3.[ ee t 
3] (tat 

3] ale 

3] fie' 
3.[ ee' 
3J (JR' 

3] a'e 
�9 3] ae" 
,3] ee" 
3] aa' 

a] a'e 
aj ae" 
a] ee" 
3j aa" 

3.[ Q'e 
3f ae, 
3J ee ! 

3.~ U(  l" 

4,1t 
2,0( 
1,6[ 

3,7E 
3,7( 
3,0( 

2,3 
2,3 
0,92 

4,2 
2,0 
1,7 

3,3 
2,2 
1,33 

4,06 
3,06 
2,88 

12,4 

3,48 
3,48 
2,3 

11,65 
3,95 
3,15 
2,77 

12,27 

4,05 (5,1)* 
2,35 (2,9) * 
1,6 (1,34)* 

12,3 (12,8)* 
3,5 
3,5 
2,75 

13,2 
2,9 
2,9 
0,44 

11,4 
3,5 
3,5 
275 

13,2 
3,5 
2,6 
1,0 

11,9 

5,o~- ; 50141] 
2 9"~ 2:7141] 
2:0,; 1,3141] 

11,3T 
3,9T 
2,7t" 

2,66[69]; 4.0['/0] 

-[7111 062 [69] 
lo2  [67]~ l z ?  [vx] 
</cis  > =2,65 [35] 

12,5137]; 
< ]  cis > =3,04 [37] 

*The est imated values for torsion angle r =55 ~ are indicated in 
parentheses .  
t The experimental  values for 2 - ( 5 - b r o m o - 2 - f u r y l ) - 4 - m e t h y l -  
1 ,3-dioxane at +26~ are presented.  
$ The values  corre,~,pond to the spectrum of c i s -2a ,4e -d imethy l -  
2e - ter t -buty l -  1,3-dithiane at - 50~ 

, 

- 2 0  

- 10  

o 

o H / ' ~  CH2 

100" 110 ~ ' 120 j ' 1 3 0 "  ~' 

Fig .  6 .  D e p e n d e n c e  o f  t h e  g e m i n a l  2JHH, c o n s t a n t  

on t h e  v a l e n c e  a n g l e  in a c c o r d a n c e  w i t h  t h e  c a l c u -  

l a t e d  v a l u e s  [84] and  t h e  e x p e r i m e n t a l  d a t a  ( n e g a -  

t i v e  s i g n ) .  
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O* 60 ~ 120 ~ 180" (9 

Fig. 7. Or ientat ion dependence of the rr 

contr ibution to the 2JHH, constant.  

UE P makes  a ce r ta in  and s o m e t i m e s  substant ia l  contr ibut ion to the geminal  (2JHCH,, 2j PCH) and vic inal  (3JHH,) 
constants .  This  contr ibution in N-methy le thy lene imine  (XVII) r e a c h e s  +1.7 Hz in the ca se  of a t r anso id  o r i en t a -  
tion of the C - H  bond c lo ses t  to the subst i tuent  and the axis of the UEP [11, 68]. 

5,3 HZ . - ~ H  

cH~ ~ /,"7,o Hz 

Let us examine the data in Table  4 for  a c o m p a r a t i v e  evaluation of the degree  of ag reemen t  between the 
ca lcula ted  3JHH, constants  and the ca lcula ted  values  in s o m e  s i x - m e m b e r e d  he te rocyc les .  It can be seen  that 
es t imat ion  by the modified method [67] gives numer i ca l  values  of the SJHH, constants  that  a r e  in c l o se r  a g r e e -  
ment  with the expe r imen ta l  values .  However ,  in the c a s e  of 1,3-dioxanes es t imat ion  of the 3Jaa, constant  by 
all methods gives a value of ~ 12.5 Hz instead of the exper imenta l  3jexp, value of 10.8 Hz. However ,  this con-  

s t a n t  is c l o se r  to the es t imated  values in other he te roeyc les .  For example ,  in 1 ,3-propanediol  sulfi te (XIV), 
which, like 1,3-dioxane,  contains an -OCH2CH20- f ragment  and is dist inguished by high r igidi ty of i ts  cha i r  
conformat ion,  the 3Jaa, constant is 12.8 Hz, i .e . ,  it is c lose  to the calculated value. Thus a contr ibution by the 
a l t e rna t ive  conformat ion  evidently exis ts  in those  he te rocyc les  in which the exper imenta l  SJaa, constant  is 
lower than the expected value. In the ca se  of b i l a te ra l  exchange this contr ibut ion can be es t imated  f r o m  the 
explicit  express ion  

31 exp 3 t c a n ~  1 3 r c a n ~  
. . . . .  , . . . . . .  , , . - z ) +  J,,e, z, (17) 

where  X is the f rac t ion  of the a l te rna t ive  conformat ion.  In the ca se  of VII and a s suming  3xcan~ ~ Hz and 
3rcanon = 1.3 Hz we obtain X = 0.16,* i .e. ,  the contr ibution by the a l t e rna t ive  chair  conformat ion is significant o e e T  
(16%). 

5. S t e r e o s p e c i f i c i t y  o f  t h e  G e m i n a l  2 J H H ,  C o n s t a n t  

The gem[nal 2JHCH,, 2JPCH, , and other  constants  have except ional ly  high s te reospec i f ic i ty .  However ,  
until r e cen t ly  they were  r a r e l y  used in conformat ional  ana lys is  because  of the lack of sufficiently comple te  ex-  
pe r imen ta l  conf i rmat ions  of the theore t i ca l  predic t ions .  The 2JHH, values usual ly  r ange  f r o m  +42.4 to - 2 1  Hz 
[72]. A quali tat ive examinat ion of the 2JHH, constant  in the X - C H 2 - Y  f ragment  shows that its magnitude de- 
pends on the following fac to r s  [73, 74]: on the hybridizat ion of the carbon a tom and, consequently,  on the 
va lence  angle between the C - H  and C - H '  bonds,  on the e lec t ronega t iv i t i es  of subst i tuents  X and Y; on the 
lengths of the C - H ,  C - X ,  and C - Y  bonds; on the or ienta t ion of the valence  orb i ta l s  or  the orb i ta l s  of the un- 
sha red  e lec t ron  pa i r s  (UEP) of the X and Y a toms  r e l a t i ve  to the ~ (C-H)  bonds; on the nature  of the fl subs t i t -  
uent and the solvent .  Accord ing  to theory  [75-78] and the exper imen ta l  data [79-82], the effect of t e m p e r a t u r e  

* E s t i m a t e s  of this so r t  should not be  cons ide red  to be quantitative.  In fact ,  the poss ib le  change in the ~ angle,  
which a lso  leads to a d e c r e a s e  in the 3Ja, a constant  and an inc rease  in the 3Ja, e constant ,  is not taken into ac -  
count in such calculat ions.  Str ict  separa t ion  of the contr ibut ion of the a l te rna t ive  conformat ion  and the change 
in angle r can be achieved af ter  thorough l o w - t e m p e r a t u r e  studies of the NlVIR spec t rum.  
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Fig. 8. Contributions of A l l  . to the geminal ~JHH' constant as a function of the orientat ion of 
the adjacent he teroa tom and the CH 2 group as a function of tors ion  angle 7. The graphs a re  
applicable to any he terocycles  except those with smal l  r ings.  

Fig. 9. Dependence of the geminal sJtt H, constant in the CH2-N fragment  on the orientat ion 
of the orbi ta l  of the unshared e lec t ron pair  (UED of the ni trogen atom: 1) plperldine with an 
equatorial  or ientat ion of the UEP (see Scheme 2); 2) for  an ant i -coplanar  orientat ion with 
adoption of an average  contribution of +2.4 Hz; 3) f rom a compar ison of syn-perhydropyr ido-  
[1 ,2 -c ;2 ' , l ' - f ]pyr imid ine  (XXV1) and syn-pe rhydropyr ido[1 ,2 -e ;2 ' , l ' - e ] imidazo le  (XXVID in 
which angle ~ changes f rom 180 ~ to 150 ~ which makes the contribution for one f ragment  +2.5 
Hz; 4) and 5) spec t rum of XXVIII; 6) and 7) XXIX. 

, ~ , ~ ; ~ - - ~  -:,- 

L "  P / ~  

O" 60"  120 ~ 180 ~ @ 

Fig. 10. Angular dependence of the 
d i rec t  1JlsCH constant in the CHsOPC12 
molecule.  

can be d is regarded.  Let us examine in g rea te r  detail  those fac tors  that a re  of greates t  in teres t  in a s t e r eo -  
chemical  respec t .  

a) Dependence of 2JHH' on Valence Angle T. The dependence of 2JHH, on valence angle 7 between the C -  
H bonds is p resented  in Fig. 6. It is apparent  that this constant increases  (becomes more  positive} as the s 
cha rac te r  of the carbon orbi ta ls  increases  [83]. The f i r s t  calculat ion by the valence bond (VB) method [84-86] 
showed approximate ly  the same dependence, but the r e su l t  had the opposite sign. The sign and general  cha rac -  
ter  of the dependence of ~JHH' on 3 /were  c o r r e c t l y  predicted by the MO method with allowance for over lap  
[partial neglect  of differential  over lap  (PNDO) and complete neglect of differential  over lap  (CNDO)]; however,  
their  numer ica l  values differ somewhat f r om the exper imenta l  values [60, 87-891. 

b) Effect of a v System Adjacent to the CH s Fragment .  If the methylene group forms a part  of the cycl ic  
sys tem,  by examLning the ZJHH, constants in var ious molecules  that exist  in the p r imary  conformations one can 
perce ive  the dependence of 2JHH, on the orientat ion of the adjacent  r orbi ta l  [83]. The theore t ica l  dependences 
[73] of the ~r contribution to SJHH, on the dihedral  angle between the methylene group and the adjacent 7r bond 
a re  presented  in Fig. 7. 
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Fig. 11. Angular c o r r e l a t i o n  for the 2j PCH constant .  
The continuous line co r r e sponds  to the exper imenta l  
data [107, 108], and the upper  cu rves  we re  obtained 
by the CNDO/SP method [106]. - 

c) Effect  of the E lec t ronega t iv i t i es ,  Bond Lengths,  and Orientat ion of the Orbi ta ls  of He te roa toms  X and 
Y. Accord ing  to theory ,  the 2JHH, constant  in the - C H 2 - X -  f ragment  should become  m o r e  posi t ive  both as a 
r e su l t  of inductive ~ - e l e c t r o n  withdrawal  f r o m  the s y m m e t r i c a l  bonding orb i ta l  and as a consequence of t r a n s -  
fe r  of a pseudo--It e lec t ron  of the unshared  e lec t ron  pa i r  CUE P) of he t e roa tom X to the methylene group. The 
inductive effect  does not depend on the angle of ro ta t ion  about the C - X  bond, but the contr ibution of hypercon-  
jugation should depend m a r k e d l y  on the dihedral  angle between the orb i ta l s  of the UEP and the CH 2 group. The 
contr ibution of the second effect should be max ima l  when the in t ranuclear  H - H  axis is perpendicular  to the 
C(H 2) - X - R  plane and should be  ze ro  when one of the H a toms l ies  in this  plane. 

It is a lso  known that the d i rec t  1J13c H constant  m a y  s e r v e  as a m e a s u r e  of the s c h a r a c t e r  of the C - H  
bond. On the other  hand, a s a t i s f a c t o r y  l inear  dependence between 2JHH, and 1J13c H is s o m e t i m e s  expe r imen-  
ta l ly  observed .  The ~'JHH' constant  consequent ly  should a lso  depend on the length of the C - H ,  C - X ,  and C - Y  
bonds. 

Anteunis and coworke r s  [74] used an i tera t ion p rocedure  to thoroughly analyze  the exper imenta l  data on 
the 2JHH, constants  in the ea se  of s ix -  and f i v e - m e m b e r e d  1 ,3 -d ihe te rocye les ,  a l i cye les ,  and noncyclic com-  
pounds containing O, S, and Se a toms  and found the express ion  

4 n 4 
2j nil" = 2 .19Edi  + 2,52E E~ + 4.85E[x �9 sin 2 ~ + ( 1 - X) sin2 ~] 

i ~ i (18) 
4 - n  

+l.31 E [x.sin2q)~+ (1-x)sin2@i]-2.1n-53.95,  
i 

where  d i a r e  the lengths of the bonds of the X - C H 2 - Y  f ragment ;  E i a r e  the Pauling e lec t ronegat iv i t ies  of sub-  
st i tuents  X and Y; I- i and @i a r e  the to r s ion  angles between the b i s e c t r i c e s  that divide va lence  angle t I - C - H  
and the angle between the p or  cr o rb i ta l s  of the adjacent  h e t e r o a t o m s  (see Fig. 8); n is the number  of o rb i ta l s  
of the unshared  e lec t ron  pa i r s  (UEP); (4 - n) is the number  of adjacent  ~ bonds; and • is the mole  f rac t ion  of 
one conformat ion  in a s y s t e m  with two poss ib le  conformat ions .  

Graphs  of the A2J inc remen t s  (Fig. 8) convenient  for  p rac t i ca l  appl icat ion in conformat ional  ana lys i s  can 
be cons t ruc ted  for  he t e rocyc l e s  with X=O,  S, Se, and C on the bas i s  of Eq. (18). For example ,  in the case  of 
1,3-dioxands the port ion of the r i n g  with O(1 ) - C H 2 - O ( 3  ) a toms  in the canonical  chair  conformat ion  is c h a r a c t e r -  
ized by angle T ~ 6 0  ~ We find the inc rement  A~3=-3 .65  Hz f r o m  the lower  cu rve  in Fig. 8. The expected value 
of the geminal  constant  at the C(2 ) a tom for  the chai r  conformat ion  should consequent ly  be equal to twice the 
increment ,  i .e. ,  2JHH' = 2(-3.65) = - 7 . 3  H z , w h e r e a s  2JHH, = - 3 . 6 5  +(-1 .2)  = --4.85 I-Iz for  the unsymmet r i c a l  
boat  conformat ion  (T1=60~ T2=30~ In fact ,  the expe r imen ta l ly  obse rved  2JHH, constants  a r e  c lose  to the 
values  ca lcula ted  f r o m  Eq. (18), as  can be seen f r o m  Scheme 1. The fact  that  exper imen t s  show a somewhat  

�9 s m a l l e r  constant  (2JHH, = -  6.2 Hz) than the expected value in the case  of the chai r  f o r m  of XVIII is evidently due 
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ei ther  to the contribution of the a l ternat ive  conformation,  for  example,  ha l f -cha i r  XXI, in which tors ion angle 
Ti a re  0 and 15 ~ and the expected 2JHH, constant is consequently - 0 . 4  Hz, or  to a somewhat different  tors ion 
angle. The orientat ion of the unshared e lect ron p a i r  of the ni trogen atom also has a pronounced effect  on the 
magnitude of the 2JHH, constant.  This effect has been examined by Chivers and coworkers  [91, 92] in the 
case of methyl-subst i tu ted perhydropyr ido[1 ,2-c]pyrro lo[2 ,1-c] imidazoles  (XXIID, syn-  and an t i -pe rhydro-  
7,11-methanopyrido[1,2-c]  [1,3]diazocines (XXIV, XXV), in which the geomet ry  of the N - C H  2 f ragment  is fully 
determined,  and other  ni t rogen-containing five- and s i x -m em b ered  mono- ,  bi- ,  and t r icycl ic  compounds. 

H 
S0 / H o AS(:, O R. ao~.. .13u-i = 

- 6, 2 Hz - 4,7 Hz ' R: 1 -adamantyl ;-2,8 Hz 

XVlII XIX XX 

u-'t sa~ ,...,.~ ~s H R O.~ 

'~ -I : '~I + ',-I 's oaj'---,,~ ,~i+ ,,_i <, ~ ~  H 
o.= +1o oc ~o o~_ +'>.o R ,i, - 

60v60 15~% H &5~60 % i - I  
-0,4 HZ -5,7 HZR=Me 

-6,1 I"Iz R.  Ph 

XXl XXII 

Scheme 1. Some canonical  conformat ions  of 1,3-dioxane sys tems  and 
theix cor responding  exper imental  2JHH, constants in the - O -  CH 2-  O -  
f ragment  [74]. 
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The 2JHH, constants  for  the chair  fo rm of s i x - m e m b e r e d  he te rocyc les  with a definite spatial  or ientat ion 
of the orbi ta l  of the unshared e lec t ron pair  of the ni trogen atom a re  presented  in Scheme 2, and an empir ica l  
graph that i l lus t ra tes  this angular dependence is p resen ted  in Fig. 9. This (see Scheme 2, next page) graph is 
applicable only to the endocyclic ni t rogen atom. In addition, one must  bear  in mind that co r re la t ions  s imi la r  
to that p resen ted  in Fig. 9 can se rve  as a conformat ional  c r i t e r ion  only in s e r i e s  of r e l a t ed  compounds [93, 94]. 

It is in teres t ing  to note that the or ientat ion of the orbi ta ls  of the sulfoxide group in der ivat ives  of 1,4- 
oxathiane S-oxide fit into the same scheme [95]. Molecules of compounds of this type exist  in equatorial  (XXX) 
and axial (XXXI) conformations with r e spec t  to the S--- O bond. Formal ly  speaking, the valence e lec t rons  of the 
excited sulfur atom with sp3d ~ hybridizat ion can be al located over  the t e t r ahedra l ly  or iented  orbt ta ls ,  in which 
case one of the unshared e lec t ron  pai rs  (UEP) of te t rava lent  sulfur can be placed in the hybridized orbi ta l ,  
which in the case  of fo rm XXX is ant i -coplanar  r e l a t ive  to the C - H  a bond (r =180~ and a higher  value can be 
expected for the 2JHH' constant than i n the  case  of the axial  conformat ion of S---O, in which the orbi ta l  of the 
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Scheme 2. Examples illustrating the contribution 
of the orientation of the orbital of the unshared 
pair of electrons of the nitrogen atom to the gemi- 
nal 2JHH, constant in six-membered hererocycles. 

UEP forms dihedral angle q~=60 ~ In fact, experiments show that in the case of form XXX one observes 2J3ase= 
-11.3 and 2Jsase=-12.0 Hz, whereas for XXXI one observes 2J3a3e=-13.8 Hz and 2Jsase=-14.2 Hz. 

Ar S ~ O  AcO S~.  

O ~ H e  
C%o % ~_ 

0 Q 

He H a 

XXX XXXI 

6. S t e r e o s p e c i f i e i t y  o f  t h e  C o n s t a n t s  o f  Sp in  - Sp in  

C o u p l i n g  b e t w e e n  t h e  P r o t o n s  and  t h e  13C, t4N, ~SN, tSF ,  

31p, l�94 ' a n d  199Hg N u c l e i  

a) Direct 1J13ci_ t and iJ31pH Constants. The 1Jr3 Hconstant is proportional to the order of the bond between 

the coupling nuclei and is a measure of the s character of the bonding orbitals of carbon [96-98]; in the H - C -  
X fragment it increases as the electronegativity of substituent X increases [97, 99]. 

Little study has been devoted to the stereospecifiCity of the direct constants. The effect of the orientation 
of the unshared electron pair (UEP) of the nitrogen atom [100] on tJ13CH is due to partial delocalization of the 
UEP over the C-H bond [101, 102]. The same problem has been examined by the Hiickel method [103] in CH 2- 
N and CH2- ~ fragments [103]. The angular dependence of the tJlsCH constant in groups with a cationic carbon 
atom was discussed in [104, 105]. Calculation of the 1Jt3cH constant within the CNDO/SP (complete neglect of 
differential overlap according to Santry-Pople) approximation in methyl dichlorophosphite indicates its clear 
dependence on the orientation of the O-  P bond [106] (Fig. 10). This dependence can apparently be used for the 
assignment of the spatial orientation of the C-H bonds in phosphorus- and oxygen-containing rings. 

In a stereochemical respect little study has been devoted to the tJ31PH , iJ31piSN , 1J31P13C , and 1J13ct3c 
constants. 

b) Geminal 2J3tpCH, 2J13ccH, and 2J19FC H Constants. The first  of these constants is of great value in the 

conformational analysis of cyclic phosphorus-containing compounds. The dependence of 2J3iPCH on the orienta- 
tion of the unshared electron pair (UEP) of trivalent phosphorus relative to the P - C - H  plane (Fig. 11) was 
constructed on the basis of experimental data for cyclic phosphines [107,108]. Calculation by the CNDO/SP 
method [106] basically confirms the experimentally observed tendency, with the exception of angles e, which 
correspond approximately to an anti-coplanar orientation of the orbital of the UEP of phosphorus and the C-H 
bond. 

The problem of the stereospecificity of the 2J31pC H constant for pentavalent phosphorus has been touched 
upon only in part [109], and it has been shown that in 2-methyl-2-oxo-3-phenyl-4-methyl-1,4,2-oxazophosphorin- 
ane with a gauche orientation of the P - O  bond (XXXII) this constant is -2.3 Hz, whereas it is -19.3 Hz in the 
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Fig. 12. Dependence of the eisoid and t ransoid aUyt 
4JHH, constant on the or ientat ion of the C - H x  bond 
relative to the nodal plane of the C = C bond. 

case of an anti-coplanar orientation relative to C-H (XXXII1). Calculation within the Pople-Santry approxima- 
tion for methyldichlorophosphine oxide [CH3P{O)C12] shows a similar tendency [196]. 

The geminal 2J13ccI_ I constant in the case of five-membered unsaturated rings with two sulfur atoms in 
the 1 and 3 positions has been experimentally determined [110]. In this study the 2Jt3cc H constants were dis- 
cussed from the point of view of the effects of hyperconjugation, and it was concluded that participation of the 
d orbitals in the bonds of the unsaturated carbon atom with the sulfur atom does not play any role whatsoever. 
However, this does not mean that the 2J13cc H constant is not stereospecific. This problem requires further 
detailed experimental and theoretical study. 

CH~ 0 

\ ' - o ~ " ~ o  " "-o" ~ "CH 3 
H 

ZJpH =-2q3  HZ  -19 ,3Hz  

KXXII  XXXIII 

The spin-spin coupling constants with participation of lSF nuclei in fluorine-containing heterocycles are 
stereospeeific [1, 111, 112], but this problem has not been investigated in detail for the 2J19FCI_ I and 2JigFCI9 F 
constants. 

c) Vicinal Constants with the Participation of Protons and the Nuclei of lSC, 14N, 15N, 19F, 29Si, 31pp llgSn ' 
and 199I-Ig Isotopes. The experimental and theoretical data show that the 3J13cCCH constant follows dependences 
of the Karplus form [113-115]. Angular correlations of the 3J15NCCH constants have been examined by the 
PNDO (partial neglect of differential overlap) method by Solkan and Bystrov [116] for a peptide fragment. The 
applications of a similar constant in biologically important systems have been fully described in a review [117]. 
A dependence of the Karplus form is characteristic for the vtcinal 3Ji4,15NCCH constants [118-122]. 

Theoretical and experimental studies [123-128] have been devoted to the establishment of the dependence 
of the vicinal 3Ji9 FccHCOnstant on the dihedral angle. 

2n 
A paper [129] in which it was demonstrated that the reduced constant 3K ~+mccH =~/ySIyH 3L~SiCCH lies on the 

Karplus curve was devoted to the study of the stereospectficity of the 3J29sicc H constant. 

The angalar dependence for the vicinal 3JStpH constant is of great significance in the study of the three- 
dimensional structures of heterocyclic organophosphorus compounds. In the P - X - C - H  fragment this constant 
depends on many parameters [108, 130-141]; among these, the most important are dihedral angle 0 between 
the I~-X-C and X - C - H  planes, the valence state of phosphorus (pHI and pV), the character of heteroatom X 
(S, O, N, Se, etc.), the hybridization state of carbon (if X=C) [138], the orientation of the orbital of the unshared 
electron pair of the pHI atom or the 1~---O bond of tetracoordinated phosphorus relative to the X - C - H  plane, 
and the electronegativities and orientations of the substituents attached to the fragment. 

The following expressions were found empirically [139] in the case of a pentavalent tetracoordinatedphos- 
phorns atom in the P-C(spS ) -C(sp~-H fragment byanalysis of the PlVIR spectra of a number of phosphonates 
with rigid geometries and an exocyclic P(O) (OCH3) 2 group: 
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aJatpvcc]t = 18cos 2 O; ~ ~ 0 ~ 0 ~ 9 0 .  (19) 

a]a,pvccH=41cos20; 90~ 180 ~ 

In this case  the contribution of the or ientat ion of the P= 0 bond is averaged due to the re la t ive ly  f r e e  rota t ion 
of the P(O)(OCH3) 2 f ragment .  If one of the carbon atoms has sp 2 hybridizat ion or  the hybridizat ion of the cyc le -  
propane r ing,  the observed  constants deviate f r o m  dependence (19) [138]. A change in the H - C - C  and P - C -  
C valence angles has a smal l  effect on the constant [139]. A change in the e leet ronegat iv i ty  of the substituent 
at tached to one of the carbon atoms gives r i s e  to var ia t ion in the aJalPCCH constant over  a range  of 0-2 Hz. 

The complete  dependence 3JalPCCH=f(0) for t r ivalent  phosphorus has not been studied. 

A cor re la t ion  s imi la r  to the Karplus curve  [141-146] was proposed for  the dependence of the aaaiPOCH 
constant on dihedral  angle 0 f r om the v e r y  beginning. As a ru le ,  the values of the 3JPOCH ( 60 ~ and ~JPOCH 
(180 ~ constants for  1,3,2-dioxaphosphorinanes with part icipat ion of pHI a re  approximate ly  half the values ob- 
se rved  in the case  of pentavalent phosphorus with a P=O(S) bond. It is t he re fo re  meaningless to speak of a 
3JPOCH =f(0) dependence in general  fo rm,  as one can see  f rom the exper imenta l  aJPOCH values for  phosphites 
and thiophosphates [147]. If the carbon atom in the p V o c H  f ragment  has sp 2 hybridizat ion,  the gauche constant 
is ~JPOCH (60~ ,~1.5 Hz, i .e . ,  its value is cons iderably  lower than in the case  of sp a hybridizat ion (4-12 Hz), 
whereas  t rans  constant aJPOCH (180 ~ re ta ins  a higher value (20-28 Hz [148]). 

The following dependence was used during a study of the conformations of 3 ' , 5 ' - cyc l i c  nucleotides [149]: 

a/a,pvocH = 16.3cos -~ 0-4.6cos 0. (20) 

This express ion  must  be used with caution and only for semiquanti tat tve es t imates ,  since it includes many as -  
sumptions.  

Despite the complexi ty  of the p rob lem of the specif ic  fo rm of the aJI~OCH =f(0) dependence, the use of the 
express ion  J~ cosa0 without a knowledge of the magnitude of the J~ coefficient  makes it possible to p e r fo rm  
conformat ional  analysis  even in the case  of noncyclic organophosphorus e s t e r s  [150]. In the case  of phosphorus-  
containing he te rocyc les  the solution of conformat ional  problems is s implif ied,  since it is n e c e s s a r y  to opera te  
with 8JPOCH values in the vicini ty of dihedral  angles 0 =60 and 180 ~ at which the fo rm er  differ substantially.  

The dependence of the averaged 3JPNCH constant on the or ientat ion of the unshared e lec t ron pair  of t r i -  
valent phosphorus was touched upon in [151-153]. 

The problem of the s t e reospec i f i c i ty  of the aapH constants in s t ruc tu res  with t r igonal ly  b ipyramidal  or  
square -pyramida l  s t ruc tu re s  of the bonds at the phosphorus atom rema ins  v i r tual ly  unsolved. 

Vicinal constants  with the par t ic ipat ion of the nuclei of llgSn and 19sI-Ig isotopes have been discussed as a 
function of angle 0 in exper imenta l  and theore t ica l  studies [154-157]. 

7. S t e r e o s p e c i f i c i t y  o f  t h e  L o n g - R a n g e  S p i n -  S p i n  

C o u p l i n g  C o n s t a n t s  

S p i n - s p i n  couplings through m o r e  than th ree  chemical  bonds a re  united under the genera l  t i t le  of long- 
range  s p i n - s p i n  coupling. The long-range  4JHH, , 4JpH , ~JHH', and other constants a r e  s t r i c t ly  s te reospeci f ic ;  
however ,  many fac tors  affect  them, and l i t t le  study of the details  of the s te reospec i f ic i ty  of such constants has 
been accomplished.  It has been shown for some specific sys tems  that an interact ion due to d i rec t  overlapping 
of the orbi ta ls  of the atoms is also super imposed  on the angular dependence of the long-range constants;  this 
introduces an additional complicat ion in the pat tern of the s tereospeci f ic i ty .  It is p rec i se ly  the long-range con-  
stants that contain somet imes  deficient  or supplementary  information during the study of the th ree -d imens iona l  
s t ruc tu re s  of he te rocyc les .  

It has been exper imenta l ly  es tabl ished that if the carbon skeleton of the f ragment  under considerat ion and 
the C - H  bond f o r m  a zigzag plane of the "M" (or "W") form,  the 4JHH, constant is posit ive [158, 159] and l a rge r  
than in the 'case of other  fo rms ,  for  which the 4JHH, values a re  usually negative. This means that if the s ix-  
m embe r e d  he te rocyc le  exists  in the chair  conformation,  the long-range s p i n - s p i n  coupling between the two 
equatorial  protons of the 1 ,3-carbon atoms is cha rac t e r i zed  by a l a rge r  constant (0.8-1.2 Hz) than, for example,  
in the ease  of a x i a l - a x i a l  coupling. However ,  these  qualitative general izat ions must be used with caution, since 
exceptions a re  also known. Many of the exper imenta l  facts  were  confirmed in a theore t ica l  study [163] in which 
the r e l a t ive  ro l e s  of " indirect"  and "d i rec t"  mechanisms in 4JHH, s p i n - s p i n  coupling were  uncovered in a num- 
ber  of specif ic  e a s e s .  
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Axial -axia l  coupling of a proton and a vicinal methyl group is usually real ized with a larger  4JHCCCH3 
constant (~ 0.8 Hz; the line of the methyl protons is broader  [164]) in s ix-membered heterocycles thau in the 
case of axial -equator ia l  coupling of the proton and the methyl group (the line is narrower). This feature can 
be successfully used for the determination of the axial or equatorial orientation of a methyl substituent. 

In the study of the s tereochemistry  of heterocycles containing unsaturated C = C bonds the allyl cisoid 
and transoid long-range 4JHH, constants sometimes contain additional stereochemical information (Fig. 12) 
[83]. It can be seen from the graphs that the 4JHH, constants may be negative or positive, depending on dihedral 
angle 0. 

The long-range constants with the participation of the nuclei of "other" isotopes are  also stereospecific.  
For example, in the case of 1,3,2-dioxaphosphorinane systems this can be seen from Scheme 3. Other examples 
of long-range couplings through four bonds have been presented in a previous review [83]. 

Scheme 3. 

~CHs ~CH S 

+ 0,5 Hz -~ 3,6 HZ 
~)CH, ~)C H 3 

~ : 2  P-O H ~ : 2 P = O  
+1,1 Hz +2,/. Hz 

Stereospecifieity of the long-range 4jpoccHconstant 
in 1,3,2- dioxaphosphor [nanes. 

The long-range SJHH, constants, including the so-called homoallyI constants (in H - C - C  = C - C - H  and 
H - C = C - C - C - H  fragments), also have 

c / C - - C \  ," -~ 
C H H ~ H  H 

XXXIV X XXV tp 

stereochemical applications [165]. According to [166], an indirect mechanism for coupling through five bonds 
leads to dependences of the form 

5! HH' = (A. cos 2 q~ + B. cos q0 + C) (A. cos 2 qf + B. cos r C), (21) 
. ~  ~ / ~ ' ~  

where ~0 and ~0' a re  dihedral angles that include the terminal C - H  bonds (see formula XXXV). The maximum 
5JHH, constant is observed when ~0 =co' =lS0~ independent of the dihedral angle in the vicinity of the cen- 
tral  C -  C bond (XXXIV). The stereochemical  applications of homoallyl constants in cyclohexene s tructures  are  
discussed in [167, 168]. 
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